I have recently been thinking about gimbal lock problem. This article http://en.wikipedia.org/wiki/Gimbal_lock explains very clearly the problem, but I will describe it in my own words.
Imagine a right-handed coordinate system, and the three cardinal axes $X$, $Y$ and $Z$ sticking out of the origin. Now imagine you are standing at position, say, $(0, 0, 5)$. So you are looking against $+Z$ axis. Now imagine you rotate the axes by $90$ degrees around $Y$ axis, counter-clockwise. At this moment $+Z$ is pointing at starting $+X$ direction, and $+X$ is pointing at starting $-Z$. The problem which arises now is that no matter whether you rotate around $X$ or $Z$ axis, the rotation will proceed around the starting $Z$ axis. At this configuration you cannot rotate around the starting $X$ axis. This problem is called gimbal lock, and roughly speaking it is about losing $1$ degree of freedom (we can no more rotate around $3$ axises, but $2$).
What bothers me is that I always keep hearing that the solution to the problem is to use quaternions. People most often use matrices to perform transformations, but when gimbal lock is a problem then quaternions should be used. Well, rudely speaking it's bullshit ;). Gimbal lock can be avoided both with quaternions and matrices.
I think that problem is that people mostly do not understand what the problem is. I must admit that I still get confused with all these rotation-related stuff, including gimbal lock. But what I know for sure is that gimbal lock is not a problem of, so to speak, a tool used to perform a rotation, but rather it is a problem of approach we take.
Let's take a look at the following piece of code:
mtx worldTransform *= mtx::rotateX(roll) * mtx::rotateY(yaw) * mtx::rotateZ(pitch)This code performs rotation using matrices and using so-called Euler angles (roll, yaw, pitch). This code will suffer from gimbal lock. The problem is "nesting" of the transformations. If we perform some roation around $X$ axis only, we will get the result we want. But, if we additionally perform rotation around $Y$ axis, then this will also affect rotation around $X$ axis. As we have said before, doing rotation around $Y$ axis by $90$ degress will point the initial $+X$ direction towards $-Z$ direction. That's why rotation around $X$ axis in that configuration will result in doing roation around world space $Z$ axis. Moreover, note that in the formula we have additional outer-most rotation around world space $Z$ axis. Since this transform is outer-most it's not affected by any other transform and thus will always work as expected - do a rotation around world space $Z$ axis. So using the ordering as above, $XYZ$, and doing $90$-degrees rotation around $Y$ axis will cause that any rotation around $X$ axis and $Z$ axis will rotate "the world" around $Z$ axis (probably the ordering, clockowise/counter-clockwise, will only differ).
objectQuat = quat::rotateX(roll) * quat::rotateY(yaw) * quat::rotateZ(pitch); mtx worldTransform = objectQuat.toMatrix();Well, we are using quaternions. But... this code will give exactly the same results! It really does not matter whether you use a matrix, quaternion, duperelion, or any other magical tool. You will have gimbal lock as long as your approach will try to construct the rotation in "one step". To actually get rid off gimbal lock you simply have to rotate your object "piece by piece", that is, not using one concretely-defined transformation matrix/quaternion. Take a look at this:
worldTransform *= mtx::rotateX(rollDelta) * mtx::rotateY(yawDelta) * mtx::rotateZ(pitchDelta);Note that here we do not assign the combined rotation matrix to worldTransform, but rather we construct a "small rotation offset" (note we are using deltas here, not the definitive roll/yaw/pitch values!) and then we apply this "small rotation" to worldTransform by multiplication. So in fact worldTransform is not recreated each frame from scratch, but it is updated each frame by a delta rotation. So if you want to rotate your object around $Y$ axis in a frame, simply set yawDelta to some value in that particular frame. Of course, keep in mind that in this case worldTransform cannot ba a local variable recreated every frame, but rather a global or static variable.
One thing that may be baffling you now is why can we have the same fixed $XYZ$ ordering and yet we do not get gimbal lock. Well, actually we do... but... I'm not completely sure about it, but for very small angles (and our delta angles are obviously small) the ordering is not important and the gimbal lock problem can be ignored. This is easy to test. If you use both of these approaches (the one without delta and the one with) and animate your object simultaneously around all three axes, you will get (visually, more or less) the same result even up to all all angles being smaller than $20$ degrees. So that means that your delta's can be actually quite big.
The same can be achieved with quaternions (you had any doubts?):
quat deltaQuat = quat::rotateX(rollDelta) * quat::rotateY(yawDelta) * quat::rotateZ(pitchDelta); objectQuat *= deltaQuat; mtx worldTransform = objectQuat.toMatrix();
This code does actually the same thing except for the fact it uses quaternions to combine the delta quaternion, which is then applied to (global or static) objectQuat, which is further converted to a matrix.
Huh, it was a pretty long note for the second one on this blog. Hope you found what you wanted here. Waiting for comments :).
EDIT: 07.02.2023
I made a YouTube video on that subject that elaborates in more detail on that issue.
No comments:
Post a Comment